
AD-A28 3 254

Final Report of N00014-91-J-1613
Principles of Fault-Tolerant and Efficient

Parallel Computation

Paris C. Kanellakis*

June 15, 1994DTCQAI I p~

VPZC QUALrry jNSpjCT,,

1 Executive Summary

Motivation: The high-performance potential of parallel and distributed computation can only be
realized with significant computation speed-ups from the coordinated action of many processors.
A basic problem that has to be addressed, in order to realize this potential, is the unreliability
of the resulting (highly complex) systems of many processors. The research of N00014-91-J-1613
-Principles of Fault-Tolerant and Efficient Parallel Computation" has focused, primarily, on the
algorithmic principles of fault-tolerant and efficient parallel computing. The desirable combination
of reliability and performance is nontrivial since efficiency implies removing redundancy. whereas
fault-tolerance requires adding some redundancy to computations.

Accomplishments: We have completed work on both general algorithmic simulation techniques
[4, 2. 3, 9. 10. 11, 121 and on interactive software that illustrates these techniques via animation [1].
An overview appears in [5]. We have completed work on self-stabilizing distributed algorithms [6]
and studied the complexity of concurrency [7, 8]. Both [4, 6] are significant algorithmic advances,
have generated much interest and motivated other work in the larger CS community. These ac-
complishments realize most of the work proposed in the ONR grant "Principles of Fault-Tolerant
and Efficient Parallel Computation". (There are two exceptions. The progress in self-stabilizing -

protocols [61 was not anticipated in the original proposal, and no progress was made on reliable
transaction control problems). C Ji
Outline: In Section 2 we summarize the research accomplishments supported by N00014-91-J- ID
1613 entitled "Principles of Fault-Tolerant and Efficient Parallel Computation" (March 31 1991 -

September 30 1993). They are grouped in four categories entitled: Robust Parallel Computing,
Interactive Animation Software for Robust Algorithms, Robust Distributed Computing, On Con- "
current Languages. These categories correspond to analogous sections in the original proposal. We 0' "
conclude in Section 3 with a review of how the funds were used.

Attached Reports: Copies of the papers mentioned have been already been provided, with the
exception of [3, 5, 8]. We include copies for these three publications with this report.

*Department of Computer Science, Brown University, Box 1910, Providence, RI 02912-1910. USA. E-mail:
pckkcs.brown.edu: Tel: 401-863-7647: Fax: 401-863-7657.

94 cb

*1P t

2 Overview of Research Accomplishments
2.1 Robust Parallel Computing

Our rrearch is an investigation of fault models and parallel computation models under which
it is possible to achieve algorithmic efficiency (i.e., speed-ups close to linear in the number of
processors) despite the presence of faults. To see that there is a reliability/efficiency trade-off recall
that reliability requires adding redundancy to the computation in order to detect errors and reassign
resources, whereas gaining efficiency by massively parallel computing (i.e., attaining speed-ups close
to linear in the number of processors) requires removing redundancy from the computation to fully
utilize each processor. Specialized trade-offs have been addressed in the area of Algorithm-Based
Fault Tolerance (ABFT). Our work can be viewed as a theoretical study of general ABFT on shared
memory fail-stop multi-processors. In terms of the theory of parallel algorithms, our work can be
viewed as investigating fault-tolerant versions of Brent's fundamental lemma.

It was somewhat surprising when in [41 we demonstrated that it is possible to combine efficiency
and fault-tolerance for many basic algorithms expressed as Concurrent Read Concurrent Write.
Parallel Random Access Machines (the CRCW PRAMs). This work initiated much more research in
this area by Kedem, Palem, Spirakis, Rabin, Anderson, WoU and others (published in IEEE FOCS.
ACM STO(and AC(M PODC).

The [4] fault model is non-trivial since it allows any pattern of dynamic fail-stop no rcstart
processor errors, as long as one processor remains alive. This fault model was extended in [10]
to include arbitrary static memory faults, i.e., arbitrary memory initialization. The CRCW PRAM

computation model is a widely used abstraction of a real massively parallel machine. Note that.
as shown in [41 it suffices to consider the model where all concurrent writes are identical. called
(COM MON ('RCW PRAM, and that the atomically written words need only contain a constant number
of bits. Interestingly. our technique can be extended (as shown in [9]) to all CRCW PRAMs (this
result was independently derived also by Kedem, Palem and Spirakis). More specifically, in [9] it
is shown how to compile any fault-free PRAM into a CRCW PRAM that executes in a fail-stop no
restart environment with comparable efficiency. A key algorithmic primitive in all this work is the
IWrit.-.411 operation of [4]. Iterated Write-All is the basis for the compilation technique in [9] and

for the clearing of memory via bootstrapping in [101.

In all the above-mentioned algorithmic work there are two key assumptions that are somewhat

unrralistic if compared to more pragmatic reliability analyses. Namely, we assume that: (1) the
processors can read and write memory concurrently, and (2) the processor faults are fail-stop
without restarts. In [3] we investigate assumption (1) about the model of computation and show
how to control and how to minimize this redundancy. Our various analyses are deterministic with
worst-case failure-inducing adversaries. For this we still assume (2) above, namely that the dynamic

processor errors do not affect shared memory and processors once stopped do not resume the
computation. More general processor asynchrony has been examined in by many researchers. Many
of these analyses involve average processor behavior and use randomization. Our contributions in
removing assumption (2) are included in [2] and are based on deterministic analysis.

Finally. in [5] we present a synthesis of these results with a hierarchy of models and appropriate
complexity classes. In [5], we also introduce and solve approximate versions of the Writf-All
problem.

Shared-Memory Architecture: The abstract model that we are studying can be realized in the
PRAM architecture in Figure 1. This architecture is more abstract than a realization in terms of
hypercubes, but it is simpler to program in. Moreover, fault-tolerant technologies all contribute

2

4

Figure 1: An architecture for a fail-stop multiprocessor.

towar,..s concrete realizations of its components. There are P fail-stop processors. There are Q
shared memory cells, the input of size N < Q is stored in shared memory. These semiconductor
memories can be manufactured with built-in fault tolerance using replication and coding techniques
without appreciably degrading performance. Processors and memory are interconnected via a
synchronous network (e.g., as in the NYU Ultracomputer) A combining interconnection network
that is well suited for implementing synchronous concurrent reads and writes has been developed
by Kruskal etal. With this architecture, our algorithmic techniques become applicable; i.e., the
algorithms and simulations we develop will work correctly, and within the claimed complexity
bounds.

2.2 Interactive Animation Software for Robust Algorithms

Animation of algorithms makes understanding them intuitively easier. As part of this project. Scott
Apgar has developed the software tool RAFT (Robust Animator of Fault Tolerant Algorithms)
which allows the user to animate a Dumber of efficient fault-tolerant parallel algorithms. The
novelty of the system is that the interface allows the user to create new on-line fault-injecting
adversaries as thu algorithm executes. The various algorithms animated adapt to this interactive
input in order to ensure correctness. The system has an extensive user-interface which allows a
choice of the number of processors, the number of parallel tasks, the algorithmic techniques. and
(most importantly) the interactive adversary controls. It consists of about 6000 lines of C and is
built on top of the TANGO animation system developed by John Stasko of Georgia Tech. (8.500
lines of C). For a detailed description see [1].

2.3 Robust Distributed Computing

Research has been completed in the area of fault-tolerant distributed computing. The problem
addressed (round-robin token management) is a key problem in high-speed networks. The solution
proposed in [61 is potentially useful for gigabit networks. It is part of the Ph.D. research of Alain
Mayer and was in collaboration with Yoram Ofek and Moti Yung of IBM and Rafai] Ostrovsky
of MIT. The subject of [6] is a new fault-tolerant round-robin token management scheme, that
is self-stabilizing and efficient, iLe., always converges fast to a correct state. More specifically
the paper investigates the problem of self-stabilizing, round-robin token management scheme on
an anonymous bidirectional ring of identical processors, where each processor is an asynchronous
probabilistic (coin-flipping) finite state machine which sends and receives messages. It is shown
that the solution to this problem is equivalent to symmetry breaking (i.e., leader election). There
have been many subsequent investigations by other researchers on this topic.

Distributed-Memory Architecture: The abstract model that we are studying can be realized
in the architecture in Figure 2. This architecture can be implemented in high-speed networks using

::: fast hardware switches (i.e., finite state machines) of size independent of the size of the network.

c 3

GENERAL PURPOSE
SOFTWARE WITH
SLC6W CLOCK

rn m NETWORK

I NODE
SIMPLE FAST
HARDWARE

(FINITE STATE MACHINE

COMMUNICATION CHANNEL

Figure 2: An architecture for a distributed memory model

2.4 On Concurrent Languages

We are in the process of studying how to incorporate our Write-All primitives as language constructs
in a number of parallel programming formalisms. Our work todate has been at the algorithmic and
the abstract machine level. We hope to be able to translate it into primitive language constructs
that can be used directly by the programmer.

In the area of theory of concurrent languages, work has been completed on the complexity of
interleaving. Interleaving is a very basic operator in the theory of concurrent processes and the
completed work is an important addition to the literature on concurrency. It is joint work of Alain
Mayer (MSc thesis) and Larry Stockmeyer of IBM [7, 8].

2.5 A Monograph

The last ongoing task in this project is [12]. "Fault-Tolerant and Efficient Parallel Computation"
is a forthcoming monograph to be published by Kluwer, (project approved May 1994, to appear in
1995). It will be an augmented version of the PhD thesis of Alex Shvartsman.

3 Conclusions

This final report summarizes the accomplishments under the ONR grant "Principles of Fault-
Tolerant and Efficient Parallel Computation" N00014-91-J-1613.

It grant has provided partial support for PhD work (Shvartsman, Michailidis, Mayer) and MSc
work (Mayer, Apgar, Michailidis). Also, it has provided two years of summer and travel support
for the P1. J17uricafion

By
Dizt ibution I

Availability Codes
Avail andlor

Dist Special

4

References

[I] S.W. Apgar, "Interactive Animation of Fault Tolerant Parallel Algorithms." Brown University
Technical Report CS-92-10, 1992. A shortened version appears in the proceedings of the IEEE
Workshop on Visual Languages, pp,. 11-17, Seattle, Washington, September 1992.

[2] J. Buss. P.C. Kanellakis, P. Ragde, A.A. Shvartsman, "Parallel Algorithms with Processor
Failures and Delays," Bro vn Univ. TR CS-91-54, 1991. Has been accepted subject to minor
revision in the Journal of 41gorithms. (Prel. version appears as P. C. Kanellakis and A. A.
Shvartsman, "Efficient Parallel Algorithms On Restartable Fail-Stop Processors," in Proc.
10th A CM! Symp. on Principles of Distributed Comp., pp. 23-36, 1991.)

[31 P. C. Ianellakis, Dimitrios Michailidis, and A. A. Shvartsman, "Controlling Memory Access
Concurrency in Efficient Fault-Tolerant Parallel Algorithms." Tech report CS-94-23, submit-
ted to the Journal of Parallel and Distributed Computing. Also, the basis for an invited talk
at CONCUR94. (Prel. version in Proc. 7th Inter. Workshop on Distributed Algorithms. LNCS
725. pp. 99-114. 1993.)

[4] P. C. Kanellakis. and A. A. Shvartsman, "Efficient Parallel Algorithms Can Be Made Robust."
in Distributed ('omput., vol. 5, pp. 201-217, i992. (Prel. version in Proc. 8th A CM PODC.
pp. 139t-148q. 1989.)

[5] P. C. Kanellakis, and A. A. Shvartsman, "Fault-Tolerance and Efficiency in massively Parallel
Algorithms" Foundations of Ultradependablk Parallel and Distributed Computing, volume II,
section 2.2. G. Koob, C. Lau (editors), Kluwer, (to appear in 1994).

[6] A. Mayer. Y. Ofek, R. Ostrovsky, and M. Yung, "Self-Stabilizing Symmetry Breaking in
Constant Space." STOCg-92.

[7] A. Mayer. and L.J. Stockmeyer, "Word Problems - This Time with Interleaving", IBM RJ
8947 (80223). September 1992, (to appear in Information and Computation).

[8] A. Mayer. and L.J. Stockmeyer, "The Complexity of PDL with Interleaving" (to appear in
Theoretical Computer Science).

[9] A. A. Shvartsman, "Achieving Optimal CRCW PRAM Fault-Tolerance," in Info. Processing
Lfttbrns. vol. 39, pp. 59-66, 1991.

[10] A. A. Shvartsman, "An Efficient Write-AU Algorithm for Fail-Stop PRAM without Initialized
Memory." Information Processing Letters, pp. 223-231, vol. 44, 1992.

[11] A.A. Shvartsman, "Fault-Tolerant and Efficient Parallel Computation", Ph.D. thesis, Brown
University Technical Report CS-92-23, 1992

[12] A.A. Shvartsman, P.C. Kanellakis "Fault-Tolerant and Efficient Parallel Computation", forth-
coming monograph to be published by Kluwer, (project approved May 1994, to appear in
1995).

5

